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Abstract—This project focuses on integrating the Unitree D1
robotic arm into the Caltech AMBER Lab’s robotics research in-
terface, Obelisk [1], with the goals of enabling loco-manipulation
experiments on a quadruped-armed system. After extensive
debugging of the Unitree D1 SDK and Obelisk, I developed a tele-
operation system consisting of a controller, state estimator, and
hardware interface. The controller performs inverse kinematics
on the gripper, and I implemented a joystick-based interface for
intuitive user control. Despite these efforts, the D1 arm failed to
reliably follow commands, even after extensive troubleshooting
and communication with Unitree Customer Service, ultimately
leading to the conclusion that the hardware is defective. The
project has pivoted toward preparation for future research in
model predictive control and reinforcement learning.

I. INTRODUCTION

The Caltech Advanced Mechanical Bipedal Experimen-
tal Robotics (AMBER) Lab focuses on developing robotic
systems—such as robotic bipeds, quadrupeds, arms, and
hands—that can interact with humans in everyday environ-
ments. In recent years, robotics labs around the world have
purchased Unitree’s robots because they are relatively cheap
and robust. Furthermore, these labs can compare the perfor-
mance of their software algorithms when they are deployed on
the same robots. Although Unitree’s robotic quadrupeds and
humanoids have been popular, Unitree has also sold robotic
arms with six degrees of freedom, equipped with grippers,
which can be attached to the quadrupeds.

Our lab has a Unitree Go2 quadruped ($2800), the cheapest
Unitree quadruped other than Go1 ($2700). One year ago,
Unitree was selling the D1 robotic arm, which can be mounted
onto the Go2 quadruped. The AMBER lab purchased the D1
arm around January 2024, however, Unitree no longer sold the
arm by March 2025. There are no robotics papers that use the
arm and only one organization unaffiliated with Unitree has
posted a video of the D1 arm functioning [2]. Despite this, we
believed that integrating the D1 arm with the Go2 quadruped
would suffice for conducting loco-manipulation experiments.

Before conducting these experiments, we connected the
arm to Obelisk and added documentation to it. Obelisk is an
open-source platform created by the AMBER Lab in 2024
to simplify robot testing. Obelisk provides a unified API for
interfacing with simulators and hardware, allowing the same
control code to run on both. Without it, developers must
write separate code for hardware integration and simulation in
MuJoCo. Additionally, Obelisk offers a suite of tools—such
as joystick interfacing and logging—that are easier to use than
those provided by ROS2. Other labs such as ETH Zurich and
the Robotics and AI Institute have developed such platforms,

however, they are closed-source and customized for their
research goals. Open-source platforms, like Dora (Dataflow-
Oriented Robotic Architecture) [3], are relatively new and
therefore unstable.

Obelisk’s documentation, however, is a work in progress,
making it challenging for newcomers to learn. Thus, I wrote a
simple controller (where the joint positions vary sinusoidally),
a state estimator, and a hardware interface for the D1 arm
and added it to Obelisk. In the Obelisk Examples repository
[17], I demonstrate how to use Obelisk as a library for more
complex control: I implemented joystick-based gripper control
and an autonomous trajectory-following demo where the arm
moves its gripper to a user-specified position and orientation
in Cartesian space.

The arm shakes significantly when controlled by a joystick
and is unable to follow the joystick commands after a minute
of execution. The arm shakes less during the autonomous
demo, but it failed to execute the pose commands after a
few minutes of operation. Unitree Customer Service could not
resolve these issues because their D1 robotic arm group was
“poached by malicious business competition.” The only re-
placement would be the Unitree Z1 arm, which costs $15,999
and is compatible only with the Aliengo quadruped ($50,000)
and the B1 quadruped ($100,000).

Therefore, I pivoted to a new project on July 30, 2025.
I read several papers to better understand state-of-the-art
robotics research. I learned about reinforcement learning (RL)
techniques such as the advantages of PPO, privileged training
[4], curriculum-based training, certain batch sizes [5], and
hierarchical learning. I read how the MIT Cheetah 3 [6] (a
robotic quadruped) was designed and how it differs from the
ETH Zurich ANYmal quadruped.

I learned about the rewards that have been used to train
quadrupeds and humanoids to traverse the wild [7] and do
parkour [8] [9]. Some papers reward the robot for following
the correct direction, conserving energy, and staying alive (e.g.,
the height of the robot is above a threshold). In addition, they
train the robots on uneven terrain to compel them to raise their
feet. Other papers use several more rewards, including those
that encourage robots to lift their feet or imitate motion-capture
videos of human beings.

I learned that while RL is more robust than MPC, MPC
outperforms RL in environments where there are few valid
footholds [13] [14] [15]. Therefore, some labs have experi-
mented with combining RL with MPC [16].

My mentor proposed that I train the Unitree G1 humanoid to
run using pure RL, so I followed Isaac Lab tutorials on training



manager-based RL policies. I increased the commanded base
velocity in the walking base code, however, the robots were
unable to learn to walk, let alone run. The reward function
became quite unstable around the 6000th iteration.

II. METHODS/RESULTS

A. Hardware Set-up

The D1 arm was initially set up independently from the
Go2 quadruped. The D1 arm was fastened to a piece of
wood, which was clamped to a desk. The ALITOVE 24V
Power Supply was purchased to power the arm. The arm was
connected to the MINISFORUM UM870 Slim Mini PC via
Ethernet cable. The D1 SDK was downloaded onto the Ubuntu
24.04 PC. The D1 SDK example code was debugged, so the
PC can send joint position commands to the arm and receive
arm feedback (i.e, the joint positions, power-on status, enable-
discharge status) from the arm. The bug fixes were to set
the network interface name (instructions to find the network
interface name are specified in the Go2 documentation [18])
when initializing the DDS Channel Factory and to edit the
arm feedback topic name to be “rt/arm Feedback” instead of
“arm Feedback.”

B. Added D1 arm functionalities to Obelisk

I was unable to set up the most recent version of Obelisk
on the PC, so I set up version 3 of Obelisk and documented
the issues when setting up both versions here [19].

I wrote example code to demonstrate how to use Obelisk
to control the arm in simulation and real life along with
visualizing the arm in Mujoco, Rviz, and Foxglove (make sure
to toggle the “mesh up-axis” to be Z-up). This mainly involved
writing the following files:

• Controller (Python): This sends Obelisk commands to the
D1 interface. The arm initializes to its zero position, then
its joint positions vary sinusoidally.

• D1 interface (C++): This converts the Obelisk commands
into commands that the D1 Arm can parse. The interface
converts the arm feedback messages into Obelisk feed-
back messages, which the estimator can parse.

• Estimator (Python and C++): This estimates the joint po-
sitions of the arm given the Obelisk feedback messages.

• YAML file: This specifies how to launch all the Obelisk
nodes.

• URDF: This was provided by the D1 SDK, however,
the URDF was edited to say 3.1415926535 instead of
3.14 and 1.57079632679 instead of 1.57 to facilitate
computing inverse kinematics. The rotation axes were
edited for two joints, so the model matched reality.
Foxglove uses the URDF file to visualize the robot in
its estimated state.

• XML: The URDF was converted into an XML file by
following these steps [20] (which show how the Z1 Arm
URDF was converted into an XML file). Then the kp and
kd gains were edited to better match reality. Mujoco uses
the XML file to simulate a robot obeying the controller’s
commands.

• Gripper utility: The URDF and XML files simulate
the gripper as two prismatic joints even though it is
controlled by one servo motor on the hardware. Hence,
the controller publishes the control inputs in meters for
the prismatic joints. The D1 arm, however, expects the
gripper command to be the servomotor angle in degrees.
Thus, a gripper utility file was written to convert the
control inputs from meters to degrees by using the law
of cosines. Other files were debugged as well.

C. Debugged how Obelisk launches nodes

I wrote code for the Obelisk Examples repository to demon-
strate how to use Obelisk as a library to control the arm.
I implemented inverse kinematics in the controller by using
the method taught in the Caltech course ME 133a Robotics.
This involved using a KinematicChain node that subscribes
to the /robot description topic to which the URDF model is
published.

When I launched the stack (i.e. all the nodes), the Python
Mujoco simulator node sometimes failed to transition from the
unconfigured state to the active state. My mentor informed me
that the node was deprecated and slower than the C++ Mujoco
simulator node. I updated the Python Mujoco simulator node
to raise an error if a user tries to initialize it. Then I switched
to the C++ Mujoco simulator node.

When I launched the stack again, the controller node failed
to transition from the unconfigured state to the active state
50% of the time. If I commented out the KinematicChain node,
then the code failed only 10% of the time. Thus, my mentor
suggested that I use Pinocchio, a library for computing the
inverse kinematics of a robot model, instead of the method
taught in ME 133a.

I reimplemented the inverse kinematics in Pinocchio, how-
ever, the controller node failed to make the transition 80%
of the time. I traced the source of the error back to the
Obelisk launch file. Here, a global node is initialized in its
unconfigured state. Once the global node configures, it notifies
all the other nodes to configure, and it begins to activate. Once
the global node is in its active state, it notifies all the other
nodes to activate. If the global node has activated before a node
has finished configuring, then that node will fail to transition
from the unconfigured state to the active state.

I modified the Obelisk launch file: If the user autostarts
the stack (i.e., the user wants the nodes to configure and
activate automatically, then the nodes will transition through
their lifecycles independent of the state of the global node.

I likely encountered this bug because I used a computer that
did not have a GPU. Perhaps, the controller node could not
configure itself quickly enough since it was written in Python
instead of C++.

D. Debugged how Obelisk shuts down nodes

Obelisk also failed to cleanly shut down all nodes. It would
ask several nodes to shut down when they were already
shutting down. Thus, I fixed the code so that almost all nodes
would shut down cleanly. I could not figure out how to nicely



shut down the Mujoco node, though. Even if the stack no
longer appears to run (i.e., I can type a new command in the
terminal), if I type “ros2 node list,” the Mujoco node is still
listed. The node takes several seconds before it deactivates. If I
relaunch the stack before the node has deactivated, the Mujoco
node fails to change from the active state to the configured
state. (This likely caused the code to fail 10% of the time
when the KinematicChain code was commented out.)

E. Inverse Kinematics Algorithm

Algorithm 1 Inverse Kinematics
Require: number of iterations i = 0, initial joint position

guess q, damping factor γ
1: while True do
2: current pose ← FORWARDKINEMATICS(q) {get

current gripper pose}
3: e ← DIFFERENCE(desired pose, current pose)

{Compute error between desired pose and current
pose}

4: if ∥e∥ < MIN ERROR THRESHOLD or i ≥
MAX ITERATIONS then

5: break
6: end if
7: J ← COMPUTEJACOBIAN(q) {Get the relationship

between the joint velocities and the gripper velocity}
8: v ← −J⊤(JJ⊤ + γI)−1e {Get the update factor to

approach the desired pose}
9: q ← q + v · δt {Update the joint position guess

(integrate)}
10: i← i+ 1 {Update the number of iterations}
11: end while

After the while loop has ended, q should approximately be
the joint positions for the gripper to reach the desired pose.

F. Attempted to smooth the robot’s movements for the joystick-
based controller

I implemented a joystick-based controller using the Obelisk
library. The joystick commands the gripper at 10 Hz to move
in the x-y-z direction, rotate about the x-y-z axes, modify its
claw stroke (i.e., distance between the gripper’s clamps), or
reinitialize. The arm fails to achieve the commanded servo
positions and does not follow any commands after a few
minutes of execution. I tried to debug this by doing the
following.

I wrote a simple program called initialize arm.cpp in C++
that sends commands at 10 Hz using mode 1 to move the arm
from one position to another using a joint spline. Unitree says
10 Hz is the control cycle of the arm [21]. The arm, however,
moves very shakily. After a few minutes, the arm would only
partially move toward the commanded servo positions. Shortly
after, the arm would not respond to any commands.

I sent commands at 100 Hz and the arm appeared to move
more smoothly. After a minute, however, the arm would fail
in the same manner as above.

I reduced the control frequency to 10 Hz and sent commands
using mode 0, which Unitree specified is for the “small
smoothing of 10 Hz data,” whereas mode 1 is for the “large
smoothing of trajectory-use.” The arm was even shakier and
promptly failed.

I ssh-ed into the robot to see the execution time of the
commands sent at mode 0. I edited it to be 0.1 seconds instead
of 0.04 seconds. However, the arm was still shaky. I also
edited the execution time to be 0.01 seconds and tried sending
commands at 100 Hz with mode 0, however, the arm failed
as before.

In the D1 SDK example code, there is a file titled mul-
tiple joint angle control.cpp, which publishes one command
containing all seven servo positions. I recorded a video
alternating between running initialize arm.cpp and multi-
ple joint angle control.cpp. After a few minutes, the arm
failed. I messaged Unitree Customer Service, but the represen-
tative was not allowed to look at my code and all his questions
indicated that he was unfamiliar with the D1 arm. After a week
of messaging, the representative asked me to fill out a Google
Form to provide feedback on the arm. Nothing he said was
helpful.

I asked if Unitree was still developing the D1 arm (since
Unitree no longer sells it) or if they were focusing on the
Z1 arm. The representative said, “the R&D team for the
robotic arm group was poached as part of malicious business
competition. A new team has now taken over. It will take them
some time to restore the data, as it was also deleted due to
malicious business competition.”

G. Attempted to send one command every thirty seconds

In the D1 SDK, there is a file called arm zero control.cpp,
which publishes one command to move the arm to its zero
position. I alternated between running arm zero control.cpp
and multiple joint angle control.cpp about ten times, and the
arm did not fail.

I edited my Python controller. When the stack is launched,
one can view the arm and the goal frame in Foxglove. The
joystick moves the goal frame in the x-y-z direction and
rotates it about the x-y-z axes of the goal frame. The joystick
can control the gripper position, reinitialize the robot, and
emergency-stop the robot. Once the goal frame is in the desired
pose, the user can command the arm to move the gripper to this
pose by hitting the joystick’s SHARE button. Since the robot
receives fewer commands, the user can operate the robot for a
longer duration (about five minutes) before it starts failing to
achieve the commanded servo positions and stops executing
any commands.

H. Connecting the arm to the Go2 quadruped

At this point, I had been testing the arm on my desk using
a power supply I had purchased from Amazon. Perhaps, the
power supply was defective, and that is why the arm was
failing. I decided to attach the arm to the Go2 quadruped since
the arm was meant to be powered by the dog. However, the
arm failed as before. A few servomotors were burning hot as



well. We concluded that the arm is defective and we cannot
fix it.

I. Attempted to train G1 to run

To develop the running baseline, I modified the walking
baseline, so the commanded base velocity ranged from -3 to
3 m/s. After 3000 iterations, all robots stood (in comparison,
after 3000 iterations of training the walking policy, all robots
walked). After 6000 more iterations, almost all the robots
stood, but some walked diagonally or walked in place by
periodically raising their feet about an inch off the ground.
The mean reward became very unstable around the 6000th
iteration due to the action rate reward becoming unstable.

III. DISCUSSION

Although I discovered that the arm malfunctions six weeks
into my SURF project, I still gained a lot from the experience.
I learned C++ and practiced writing cleaner Python code. I
learned how to use Obelisk, Mujoco, Foxglove, and Pinocchio.
I improved my debugging skills by debugging Unitree and
Obelisk code. I learned that it is suspicious when a robotic
arm is no longer sold by a company. I got the opportunity to
learn more about state-of-the-art robotics research and how to
use Isaac Lab to train RL agents.

If the lab purchases another 6-DOF arm with a gripper,
they could easily set it up by basing it off my code. The main
difference would be the interface between Obelisk and the
hardware.
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