
America, Davis, and Eloise 

ME/EE/CS 134 

20 March 2025 
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Introduction: Task and Concept 

​ Shelvin’ Cooper the Robolibrarian is a 6-DOF robotic arm that assists with sorting and 

shelving books. With Shelvin’, users can place books within the workspace (provided they are 

not overlapping each other) and allow the robot to handle the sorting and placement of these 

books on the shelf. This is intended to demonstrate technology that can assist librarians by 

reducing re-shelving time without having to significantly interact with the robot. 

​ Because shelving books is multi-stepped, visually complex, highly coordinated, and 

innately human, this project was highly complex. Six DOFs are needed to accurately pick up, 

rotate, and place books; markers and cameras are needed to determine book orientations and 

shelving availability; and a complex state machine is needed to drive the transitions between 

each of the steps. These difficulties and our design decisions are described throughout this report. 

​ At a basic level, the robot first uses vision to detect a book on the table. Then, it reorients 

the book so that the spine is parallel to the edge of the table. Next, the book is moved to the 

pickup zone, from where it is finally picked up and placed in the next available shelf slot. Each 

of these steps and the various considerations that must be designed for are also described in the 

sections below. 

 

 



Mechanism and Hardware 

​ The design of our robot is a more complex extension of the initial 3 DOF arm designed 

for the class. We use 6 degrees of freedom including a shoulder horizontal rotation, a shoulder 

vertical rotation, an elbow, a wrist vertical rotation, a wrist horizontal rotation, and a gripper 

vertical rotation (in addition to the gripper motor itself). The HEBI X8-9 is used for horizontal 

shoulder rotation. A stronger motor is used here because it controls the pan motion of the entire 

arm. Next, a HEBI X8-16 motor is used for the vertical shoulder rotation. This is the strongest 

motor available for us, and it was necessary for lifting the heavyweight of the 6 DOF arm. An 

X5-9 motor is used on the elbow as it is again lifting a significant amount of weight, while X5-4 

motors are used on all remaining joints because they handle less weight and need more precision 

and speed. An X5-9 motor is used for the gripper cable actuation. The robot, shelf, table, and 

book were modeled in Onshape. When the arm stretches to shelve a 1lb-book, the torque exerted 

about the X8-16 motor was approximated to be about 16 Newton-meters, not including the 

weight of the links. Since the X8-16 motor can exert a peak torque of 40 Nm, we decided to 3D 

print and laser cut the parts and iterate upon the design if necessary. The CAD model is linked 

here: 

https://cad.onshape.com/documents/76729ec31bc2a3db5b03c44d/w/8ac03c09c996d3fde7f649f5

/e/ce2b411d71e195d5db2d8012?renderMode=0&uiState=67dc832fd70f565d5e910d5d.  

​ We use two links, one of length 415 mm between the shoulder and elbow, and one of 

length 315 mm between the elbow and wrist. A spine structure is used on each link to provide 

rigidity while being lightweight. A 3D printed U-Bracket houses the shoulder and gripper 

motors, while two L-shaped brackets build the wrist and actuator structures. Finally, the gripper 

https://cad.onshape.com/documents/76729ec31bc2a3db5b03c44d/w/8ac03c09c996d3fde7f649f5/e/ce2b411d71e195d5db2d8012?renderMode=0&uiState=67dc832fd70f565d5e910d5d
https://cad.onshape.com/documents/76729ec31bc2a3db5b03c44d/w/8ac03c09c996d3fde7f649f5/e/ce2b411d71e195d5db2d8012?renderMode=0&uiState=67dc832fd70f565d5e910d5d


consists of two 3D printed pincers that are covered with anti-slip rubber pads to help with 

picking up the books. 

​ The URDF was constructed via the onshape-to-robot Python package, which seems to 

require one assembly/part per link. Otherwise, onshape-to-robot will fail to generate the URDF. 

In addition, the CAD model should be in its zero position before running the converter. Our CAD 

model fed into the converter is here: 

https://cad.onshape.com/documents/76729ec31bc2a3db5b03c44d/w/8ac03c09c996d3fde7f649f5

/e/33063c214a4dc9d4385974f5?renderMode=0&uiState=67dc8be4d70f565d5e912c2d. 

​ Besides the use of a 6 DOF robot, one of the most unique features of our system is the 

use of two separate tool tips for the kinematics. The first is the gripper tip, which is used for 

picking up and shelving the books. The second is the bracket tip, which is at the end of the 

gripper L-bracket. This tip is used for reorienting and pushing the books into the pickup location. 

​ Lastly, we also use several books donated by America and Eloise, and the Caltech 

Library generously lent us an old table shelf with shelf dividers.  

 

Task Space, Kinematics, Trajectories, Precision, Continuity 

​ Given that shelving books is an innately human task, it involves both translational 

placement in all x, y, and z directions, along with all orientations (at some point during the 

algorithm). Thus, our task has 6 degrees of freedom, although we mostly focus on two angles for 

the book’s orientation. This many DOFs required a more careful approach to the Newton 

Raphson so that reasonable solutions, aka solutions in which the robot didn’t collide with itself 

or the table, were determined. First, we initialized the robot to its home position and stored its 

joint positions as an initial seed. The Newton Raphson algorithm uses the initial seed to compute 

https://cad.onshape.com/documents/76729ec31bc2a3db5b03c44d/w/8ac03c09c996d3fde7f649f5/e/33063c214a4dc9d4385974f5?renderMode=0&uiState=67dc8be4d70f565d5e912c2d
https://cad.onshape.com/documents/76729ec31bc2a3db5b03c44d/w/8ac03c09c996d3fde7f649f5/e/33063c214a4dc9d4385974f5?renderMode=0&uiState=67dc8be4d70f565d5e912c2d


how to move the bracket tip to the correct x-coordinate, while maintaining the same 

y-coordinate. The final joint positions are stored as used as the next seed for computing how to 

move the bracket tip to the correct y-coordinate. We use the final joint positions as the following 

seed for computing the joint positions during book pickup. If the robot must move the bracket in 

the x direction first, then the y direction, the robot will perform these actions. Otherwise, it 

“hallucinates” this process: Newton Raphson is run, but the joint positions aren’t published in a 

SegmentArray message. In addition, we use the joint positions at the home position as a seed for 

computing the joint positions during shelving. When shelving manga as opposed to Western 

literature, the gripper must be rotated -180 degrees instead of 180 degrees. Strangely, Newton 

Raphson finds unreasonable configurations with the former gripper orientation. Therefore, we 

compute all the joint positions assuming that the book is Western; if the book is manga, we 

manually set the gripper’s joint position to -180 degrees.  

Furthermore, although the orientation of the gripper during reorientation and translation 

doesn’t matter (so long as the gripper doesn’t scrape the table), Newton Raphson struggled to 

find reasonable solutions using the bracket tip chain and a Jacobian for the desired x, y, z 

coordinates as well as the desired normal vector for the z-axis of the bracket tip. Thus, we 

specified the desired x, y, z coordinates and rotation matrix for the bracket tip. To ensure Newton 

Raphson is able to find a solution in 6-DOF task space with only 5-DOF joint space, we almost 

always limited the bracket tip frame to rotate about the world’s z-axis .  (The exception is the 

moment right before the robot shelves the book. The bracket faces slightly upward to prevent the 

book’s foot from colliding with the shelf). The Newton Raphson algorithm uses a weighted 

inverse to prevent the robot from reaching singularities. As we corrected the URDF file, we 



wrote pi and pi/2 to several decimal places to ensure Newton Raphson could converge in under 

10^-6 error. 

​ The gravity model is a very important module within the trajectory node. Since both the 

robot arm and the books it carries constitute a much greater weight than we dealt with in the 3 

DOF case, we needed a very strong gravity model. The equations for the gravity model are 

shown below. Note that since the coefficients are quite large, this effort command would 

introduce a jerky movement when the robot started up. This was improved by slowly ramping up 

the gravity over each time the module gets called by trajectory. We found that increasing the 

coefficients 1/100th at a time produced a smoother startup. 

 

Where A = 30, B = 8, and C = 2.5. 

​ Likewise, moving large weights around at unique orientations meant that the robot would 

have different errors across the table and across task objects. This encouraged us to produce a 

large error map which greatly increased the accuracy of our system. The friction between the 

table and the bracket impacts the positional error of the tip, therefore we always lift the tip, then 

place it at a point (next to a book). Different orientations of the tool tip at a given point had 



different translational errors as well, so we calculated the error map for when the bracket tip was 

in one of three orientations: when the z-axis of the bracket tip faces negative x, positive y, or 

positive x. Whenever the robot receives a desired position and orientation, the positional error at 

the desired position is interpolated between all points collected for that orientation, and we adjust 

the commanded desired position accordingly. This made the pushing motion and picking up 

motions significantly more consistent. If the bracket tip is commanded to be at a different 

location, e.g. when it’s parallel to the fore edge of a book, we simply tell the robot to interpolate 

the positional error for all points collected at the positive y orientation. This interpolation process 

could be more effective if we interpolated the error across the orientations. The force that the 

book exerts on the robot also impacts positional error of the tip. To facilitate pushing books the 

proper amount to the pickup zone, we associated a push offset with each book i.e., if a book must 

move -0.1 meters in the y direction, the robot will be commanded to push the book -(0.1 + the 

push offset) along the y-axis.  

​ To demonstrate a typical cycle of the robot, we recorded the joint positions and plotted 

them in the figure below. There are a few interesting results to notice in this plot. First, the base 

joint remains relatively close to the zero position except for when the book is being translated or 

needs to be picked up from the side of the table. Second, the positions are very smooth, which is 

expected given that we used quintic splines to program our trajectories. Third, the highest 

velocities are recorded by the smallest joint around the wrist. This is desirable because we 

needed the joints lifting a heavier weight to move slowly so that the robot would not oscillate. 

However (and fourth), there is still some oscillation that can be seen in the elbow and base 

around 90 seconds. This is likely where the robot shelved the book before returning home. Since 



these values were tuned close to the shelf, and since the robot released the weight of the book, 

there was some extra movement at a high enough speed to cause the robot to oscillate. 

 

 

Cameras and Visual Detectors 

The system continuously processes images from the USB and RealSense camera. The 

RealSense RBG images are used to detect all Aruco Markers (table markers and book markers). 

Using the first image, the table markers are used to compute and store our perspective transform 

(self.M). This perspective transform is then reused for every book marker detected to calculate 

its corners (and therefore its location and orientation). The inverse perspective transform 

(self.Minv) is also calculated at the beginning, once, and is used to annotate each image with the 

four corners of every book detected. The USB RBG images were used to detect available 

bookshelf slots. Our original approach was to define rectangular boundaries for each slot, 

threshold the HSV values of the image to produce a binary image that distinguishes the wooden 



shelf color from other colors, erode and dilate the binary image, then use the mean pixel value 

within the slot boundaries to determine whether each bookshelf slot was occupied or available. 

The night before demos, the USB camera successfully detected the slots, and the detector node 

published a SlotArray message, containing a list of bools, to the brain node. The brain would use 

this message to determine the leftmost empty slot and direct the trajectory node to shelve the 

book in this slot. The next day, however, the USB camera node kept dying shortly after being 

launched, even though v4ls-ctl said the USB camera was streaming on a certain port. Restarting 

the NUC would resolve this issue, however, the problem would sooner or later reoccur. Hence, 

toward the end of demos, we instead started with an empty shelf and instructed the robot to 

shelve from left to right. 

 

ROS Software Architecture 

​ The following flow chart presents the central nodes of our ROS program as well as the 

messages sent between them. 

 

First, the detector publishes a book array (containing the four corners of each book, 

whether or not the book is manga, the book’s push offset, and the book’s ID ) and a slot array 

(containing indicators for whether one of the five shelving slots is available or full). The raw 



images with annotations are also published. These are used for debugging with RQT and are not 

interpreted by any other node. 

The brain contains the state machine for the robot, which will be discussed in the next 

section. In addition to running the state machine, the brain completes all of the most complex 

calculations for the trajectories. Using the book and environment measurements produced by the 

detector node, the brain decides whether a book needs to be reoriented, translated to the pickup 

zone, and placed in the shelf. Each of these activities consists of position and orientation goals 

that the robot uses, along with its previous joint states, in an iterative Newton Raphson to 

determine the goal joint states. These desired Cartesian coordinates might include aligning the 

bracket or the gripper with the edge of the book and rotating proportional to its angle, pushing 

according to its planar location, or picking up and placing it according to the available shelves. 

The Newton Raphson works iteratively to confine the solution space to a reasonable 

configuration, as discussed in the Kinematics section. Once all of these calculations have been 

completed, the brain sends a segment array to the trajectory node. 

The trajectory node handles the physical movement of the robot. Using the segment 

messages it receives, it calculates the spline the joints will move through. When the trajectory is 

complete or when the robot notices a collision event, it sends a message back to the brain to 

indicate that it needs new segments or needs to go home. 

There are a couple coding intricacies that were used during coding implementation so 

that the system would work correctly. First, the trajectory node will only accept one array of 

segments at a time. For example, it will accept the sequence of picking up and shelving a book, 

but not in addition to another movement to reorient a different book. This allows us to control the 

number of times a segment is added (ideally, only once per segment) and it requires the robot to 



always take notice of changes in its environment before calculating the next move. Second, the 

trajectory node will only publish a trajectory complete message once. This is done to prevent the 

brain node from responding to multiple complete messages and sending the same segments 

multiple times. In addition to these methods, the book messages were only received with a buffer 

of 1, while most other messages were sent or received with a buffer of 10. This helped in 

reducing the number of times the robot saw a book and created a full trajectory.  

Our code base can be found in the following Github repository: 

https://github.com/eloisezeng/me134 (in the goals10 branch) 

 

Modeling/Understanding the World 

​ As shown in the node diagram in the previous section, there are several messages and 

callback functions that are utilized throughout the operation of the robot. These are used by the 

brain node to move between different states of operation. This state machine consists of Init, 

Waiting, Moving, and Contact. The Init state is only used at startup to move the robot to its home 

position. In the Waiting state, the brain accepts new book messages from the detector node and 

makes the necessary calculations for the trajectories. This state occurs only in between 

movement actions so that books are not added multiple times or incorrectly (if the robot is 

blocking the camera). The Moving state locks out the addition of new books, as well as the 

publishing of new segments to the Trajectory node. This state switches back to Waiting only 

when the trajectory node signals that it has completed the current segment array. Finally, the 

Contact state is used to handle collisions or unexpected movements of the robot, and it can 

interrupt other states to be handled as needed. These states can be seen in the sharp-cornered 

boxes in the behavior flow chart shown in the next section. 

https://github.com/eloisezeng/me134


Through this method, we are able to exert a high degree of control over the states of the robot 

and which information is being handled at a given time. 

 

Behaviors and Failure Recoveries 

​ The standard operation of the robot is described in the flowchart below. Since the system 

continuously updates the detected objects and slot occupancy status, the robot always reacts 

based on the current workspace. First, the robot checks if a book is reachable (i.e. if it’s within 

0.1 m and 0.7 m of the robot base). After a book is reoriented or translated, the robot will check 

if it can still detect the Aruco marker of that book. If not, the robot moves its base by 30 degrees 

toward the home position. If the book is visible now, the robot rechecks whether to reorient, 

translate, or pick up the book. If the book is still not seen, the robot returns to its home position 

then waits for the detector node to publish a new list of detected books. If a certain action did not 

accurately place a book where the robot wanted it to be, the robot would retry the action 

(according to the new environment) until it was satisfied. Lastly, the robot would always 

manipulate the book closest to one of two pickup zones. This allows us to handle multiple books 

on the table at once, react to users moving the book between robot movements, and select the 

proper slot to fill. Using the secondary USB camera over the bookshelf, the robot will also select 

the available slot or refuse to shelve a book if the shelf is full.  

​ Collisions are also handled as part of the Contact state (not shown below). The brain will 

command the trajectory node to erase the remainder of the current segment array and replace it 

with the “go home” sequence. A collision is detected in the trajectory node using feedback from 

the HEBI motors. The trajectory node checks whether the positional, velocity, or effort error has 

exceeded a threshold of pi/4, pi/3, or 12pi respectively. This helps filter collisions so that only 



actual undesired contacts (such as with a human) are responded to in this way, while changes in 

velocity (such as the robot lightly hitting the table as it sets the bracket down to push a book) or 

other state variables due to the robot itself are ignored. We acknowledge that these thresholds are 

still quite high and lead to false negatives during contact detection. Since the spectators wouldn’t 

touch the robot, however, we opted for more false negatives than false positives. 

 

Shortcomings, Outstanding Items, and Lessons Learned 

Some of our challenges were a result of weight. The shoulder motor has a fixed torque 

capacity, which limits the maximum weight it can support. This required us to minimize the 

distance between the load (books) at the tip and the shoulder motor. This resulted in shorter links 

and a smaller workspace. Furthermore, the system would oscillate after turning because of the 

weight, forcing us to slow down the movements. Reinforcing the links, either through a different 

design or material, may have improved this issue. 

There’s also a faulty USB 3 cable in the lab that caused us to have trouble connecting the 

RealSense Camera to the NUC.  



There’s plenty of room for improvement, such as being able to reorient books at angles 

greater than +/- 180 degrees with respect to the x-axis, detect books without Aruco markers, and 

determine whether books are stacked upon each other or not. However, we are pretty satisfied 

with how the robot turned out and are glad we pursued this challenge.  

​  
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