
Shelvin’ 
Cooper

ME/EE/CS 134 Project by Eloise, America, and Davis



Software Architecture

Brain

TrajectoryDetector

-Segments

-Book Array
-Slot Array

-Trajectory Complete
-Contact Detected

Robot States:
- Init
- Waiting
- Moving
- Contact

State Updates:
- New segments and trajectory complete 

messages lock after first being published
- Robot moves so that the marker is visible 

before recalculating the trajectory



Nominal Behavior
Start at Home Position

The robot returns to its home 
position between shelving 
books. Robot chooses the 

book that is closest to one of 
two pickup zones.

Reorient
The robot aligns the 

spine of the book to be 
parallel with the edge of 

the table
Translate
The robot pushes the book to 
the pickup position

Shelve
The robot moves the 
book over to an empty 
shelf slot and places it

Pickup
The robot completes the pickup 
maneuver at the edge of the table

5

1

2 3

4
Gripper Chain

Gripper Chain

Gripper Chain

Bracket Chain
Bracket Chain



Vision
● Intel Camera: Above the workspace

○ Proposed: Detect height of books from the surface of the table.
○ Actual: RGB camera detects ArUco markers on books. Need to locate 

book’s spine.
● USB Camera: Above the workspace

○ Proposed: Determine empty slots with ArUco markers or using OpenCV
○ Actual: Manually input the bounding box of each slot. There are five 

slots. Compute the mean value.



Recovery Behavior

● Contact Detection
○ Trajectory is replaced with “lift tip” and “return to home”

● Environment Detection
○ Robust to unexpected changes because the book location and 

orientation is always re-evaluated before making the next step 
(reorienting, translating, or shelving).

● The robot remains in home position if all book spaces are occupied



Demo

https://docs.google.com/file/d/1rnQYk2lTHaNs8YgDbxWdfjXS4JW2mxVm/preview
https://docs.google.com/file/d/1qxXy9AV-ifwzHBymDqrfLnuhNsPcA94j/preview


Lessons Learned
● URDF

○ onshape-to-robot: ensure robot is in zero position before converting to 
URDF

○ Use viewurdf.launch.py to ensure robot behaves the same in sim and 
hardware

○ If there’s a mismatch between transformation frames (specifically 
orientation), type 3.1415926535 instead of 3.14. Newton Raphson 
requires this to converge with 10^-6 error, rather than 0.01 error.

● Newton Raphson
○ Initialize robot in home position. 
○ If we command robot to go to shelving position, make sure it first 

hallucinates moving in the x direction, then the y direction. 
○ Use the last (hallucinated) joint position as the initial guess for next joint 

position.
○ Otherwise, the robot collides with the table or itself.



Lessons Learned
● Weight issues

○ Limit workspace of robot
○ Robot can pick up book
○ Use slow movements to avoid resonance
○ Might need stronger structural support so arm doesn’t wobble as much
○ Initial design emphasized being light, but we might have had more room 

to work with than expected
● Error Mapping

○ Robot is usually 0-2 cm off.
○ Error depends on bracket orientation
○ If robot starts from different configurations and is commanded to go to 

the same point, the robot tip might end up in different places.
○ Need offset.

● Sending lots of messages between nodes requires robust handling
○ Lock out messages (besides warnings) when they are not expected



Thank you! 


