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Overview 
What are the project goals, the challenge, and/or the idea that you pursued? 

In the future, robots will likely collaborate with each other to complete tasks. For 

instance, the Weston Public Library is a relatively small library serving sixty-eight 

thousand people, but even so, Eloise spent multiple hours every Friday afternoon of 

eighth grade shelving books that people had returned that morning. Her back got sore, 

her knees grew tired, but she didn’t complain because the other librarians, at least five 

times her age, hadn’t grumbled as they shelved. Instead, she sporadically plopped on the 

floor and began reading for a few (hundred) minutes.  

 

Now can you imagine how many books are returned to the Boston Public Library? 

(Eloise can’t. She’s from Boston.) It would be ideal to have multiple robots that shelve 

books in different sections of the library. There may be robots that guide people to the 

book they're searching for, or if they are lazy, the robots may retrieve the book for them. 

There could be robots that guide people to the restroom, or if they are lazy, chase them 

out of the library. There could be robots that help parents find their lost children as well 

as robots that help children evade their parents.  

 

Achieving these goals requires careful planning. Fortunately, we are terrific at planning. 

(Proof: We started this report the day before it was due.) We generalized the library 

scenario into the following: 

1.​ Multiple robots would spawn at their starting locations in 2D-space. 

2.​ Each robot would have a target destination in 2D-space. 

3.​ The robots would have to navigate through a world filled with static and moving 

obstacles to reach their destinations.  



4.​ Obstacles include: 

a.​ Tight corridors, which resemble the space in between two shelves 

b.​ Oscillating squares, which represent people or furniture 

c.​ Sliding doors, which simulate sliding doors.  

5.​ The map of the world at any given time is known. 

 

The easiest way to generate paths for each robot is to have one robot find a 

collision-free path, then ask the second robot to find a collision-free path assuming that 

the first robot’s path is fixed. However, more efficient paths may be found by having a 

central “brain” simultaneously compute the path for each robot. Let’s say eight robots 

spawned equidistantly on the radius of a circle each with a goal location on the opposite 

side. The first algorithm would likely have all robots pass through the center of the 

circle. However, a perfect simultaneous planner would have the robots move in a 

semicircle. 

Approach 
 

Before attempting to write the simultaneous planner, however, we wrote a 

temporal-spatial planner for one robot. The robot would be initialized at the node 

(x_spawn, y_spawn, t=0). It would try to find a path to the node (x_goal, y_goal, 

t=unknown). In class, we learned about the Probabilistic Road Map (PRM), Expansive 

Search Tree (EST), and the Rapidly Exploring Random Tree (RRT). The PRM builds a 

graph such that the path between any two nodes in the static world can be queried. Our 

world is dynamic, however, so it’s more efficient to use an EST or RRT, which generates 

a single path between two points. In the RRT algorithm, a target node (x, y, t) 

coordinates is randomly sampled. Then, the node closest to the target node will grow 

toward the target. However, it is virtually impossible to determine the node that is 

closest in space and time to the target node when there are obstacles moving over a long 

duration of time in between the nodes. Therefore, we implemented an EST, which 

generates a single path between two points. 



                                                                                                                                                                                    

We represent the robot as a square that can move continuously in the x and y direction. 

The x and y distances traveled are independent of each other, and the orientation of the 

square is negligible. We pick the growth node, which minimizes a metric, which is 

larger for nodes with more neighbors, greater distances from the goal, and more failures 

to connect with randomly sampled nodes. We sample a node, dubbed the next node, that 

is at a random heading from the growth node and a certain radius R (robot max velocity 

multiplied by the simulation time step) from the growth node. We set the time of the 

next node to the growth node’s time plus the simulation time step. Afterward, we check 

if there are any collisions as the robot traverses from the growth node to the next node. 

If there are no collisions, the next node is added to the EST. Then if the non-temporal 

distance between the next node and the goal is smaller than R, we attempt to connect 

the next node to the goal. If the connection succeeds, we add the goal to the tree, 

traceback the path from the start to the goal, then post-process the path to reduce the 

number of zig-zags. During post-processing, if two non-neighboring nodes are able to 

connect, the temporal distance between the nodes remains the same, however, the 

spatial distance decreases. Therefore, the robot’s velocity is no longer constant. 

 

For our single robot temporal-spatial planner, we tested two collision-detection 

algorithms to determine if node (x1, y1, t1) connects to (x2, y2, t2): 

1.​ Convex Hull Approximation: We compute the convex hull of an obstacle’s 

bounding box at t1 and t2, then check if the robot collides with this convex hull 

as the robot moves from (x1, y1, t1) to (x2, y2, t2). We iterate through all the 

obstacles. 

2.​ Van der Corput Method: Using a granularity of 1/16, we calculate at most 14 

nodes equally spaced between (x1, y1, t1) to (x2, y2, t2). We check for collisions 

between the node and other obstacles in the van der Corput sequence.  

While the convex hull approximation ran faster in simpler worlds, the van der Corput 

method found more efficient paths. In more complex worlds, the convex hull 



approximation sometimes prevented EST from finding paths, whereas the van der 

Corput succeeded.  

 

Therefore, for our multi-robot planner, we opted for the van der Corput method. 

Technical Details 
 

Below we display the pertinent lines of code. 

In constants.py, we define the start/spawn location of each robot 

Example 1: 
ROBOT_SPAWNS = np.array([[2, 2], 

                         [7, 6]]) 

ROBOT_GOALS = np.array([[2, 3], 

                        [7, 9]]) 

 

To execute simultaneous robot planning, we use MultiNodes. The MultiNode is a single 

node in the EST algorithm, but we call it the MultiNode because it stores the x and y 

position for multiple robots, along with the time. The MultiNode for Example 1 would 

have X = np.array([2, 7]) and Y = np.array([2, 6]). 

 
class MultiNode: 

    """A tree node that supports multiple simultaneous robots.""" 

    

    def __init__( 

        self, 

        X: np.ndarray, 

        Y: np.ndarray, 

        t: Optional[float], 

        parent: Optional["MultiNode"] = None, 

    ): 

        # The (x, y) coordinates of each robot 

        self.X = X 

        self.Y = Y 

        



        # Check which robots have reached their goal 

        dx_squared = np.square(self.X - ROBOT_GOALS[:, 0]) 

        dy_squared = np.square(self.Y - ROBOT_GOALS[:, 1]) 

        distances = np.sqrt(dx_squared + dy_squared) 

        radii = ROBOT_SPEEDS * TSTEP 

        

        # Indices of robots that have reached their goal 

        self.reached_goal = np.where(distances <= radii)[0] 

        self.not_reached_goal = np.where(distances > radii)[0] 

        

        # All robots share the same time 

        self.t = t 

        

        # Tree connectivity 

        self.parent = parent 

        

        # Status 

        self.children = 0 # The number of children of this node 

        self.failures = 0 # The number of times we have failed to grow 

from this node 

 

The EST algorithm is shown below. 

 
def multi_est( 

    spawn_node: MultiNode, 

    goal_node: MultiNode, 

    world: Map, 

    visual: Visualization, 

): 

    """ 

    Finds the path for each robot to move from their starting position 

    to their goal position without colliding with obstacles or each other. 

    """ 

    tree = [spawn_node] 

    while True: 

        # Build a KD Tree to get the number of nodes within a distance of 

any node 

        X = np.array([node.spacetime_coordinates() for node in tree]) 

        kdtree = cKDTree(X) 



        num_near = kdtree.query_ball_point(X, r=NEARBY_DISTANCE, 

return_length=True) 

        

        # Compute the growth node selection metric. It is difficult to 

compute the true temporal-spatial distance between the nodes (as mentioned 

when explaining why we decided against RRT). However, we are using the 

spacetime coordinates to roughly estimate the nearest neighbors for each 

node. When our metric is simply num_near, the number of neighboring nodes, 

EST struggles to find paths. We realized that, in general, EST finds paths 

much more easily when it considers how many times a growth node has failed 

to be grown from. Some exceptions to this are when the corridor is 

incredibly narrow, so a growth node may need to be grown hundreds of times 

before it finds the entryway to the corridor. Our metric also weighs the 

spatial distance between the goal node and all other nodes. This directs 

the tree to grow toward the goal, however, this tactic fails when the 

robot has to move far away from the goal in order to reach the goal.  

        distances = np.array([node.distance(goal_node) for node in tree]) 

        metric = SPARSITY_SCALING * num_near + DISTANCE_SCALING * 

distances 

​   probs = np.exp(-metric) / np.exp(-metric).sum() 

        index = np.random.choice(np.arange(len(probs)), p = probs) 

​   # By implementing a softmax function we would make it so that we 

usually choose the growth node with the smallest metric value, but allow 

the possibility of choosing a different node to grow from to encourage the 

tree to expand even more 

        growth_node = tree[index] 

        

        # Grow outwards for the robots that have not already reached the 

goal. 

        headings = np.random.random(size = NUM_ROBOTS) * tau 

        next_node = growth_node.next_node(headings) 

        

        # Check if they connect 

        if next_node.in_freespace(world) and 

growth_node.connects_to(next_node, world): 

            add_to_tree(growth_node, next_node, tree) 

            growth_node.children += 1 

            

            can_reach_goal_in_time = (next_node.robot_distances(goal_node) 

<= ROBOT_SPEEDS * TSTEP) 



 

            # Check if this next_node connects to the goal. If it does, 

stop the EST planner. 

            if np.all(can_reach_goal_in_time) and 

next_node.connects_to(goal_node, world): 

                add_to_tree(next_node, goal_node, tree) 

                goal_node.t = next_node.t + TSTEP 

                counter += 1 

                break 

 

            # Check if any robots in next_node can reach their goal 

            if np.any(can_reach_goal_in_time): 

                # Get indices of robots that can reach goal in time 

                goal_reaching_indices = can_reach_goal_in_time.nonzero() 

                target_coords = np.zeros((NUM_ROBOTS, 2)) 

                target_coords[goal_reaching_indices, 0] = 

goal_node.X[goal_reaching_indices] 

                target_coords[goal_reaching_indices, 1] = 

goal_node.Y[goal_reaching_indices] 

 

                # Get indices of robots that can't reach goal in time 

                non_goal_reaching_indices = 

np.where(can_reach_goal_in_time == 0) 

 

                # Grow outwards for the robots unable to reach the goal in 

time 

                headings = np.random.random(size = NUM_ROBOTS) * tau 

                following_node = next_node.next_node(headings) 

                target_coords[non_goal_reaching_indices, 0] = 

following_node.X[non_goal_reaching_indices] 

                target_coords[non_goal_reaching_indices, 1] = 

following_node.Y[non_goal_reaching_indices] 

                # Construct the target_node, where some robots are at 

their goal positions while other robots have grown in a random heading. 

                target_node = MultiNode(target_coords[:, 0], 

target_coords[:, 1], t = None) 

                 

​ ​      # Check if next_node connects to target_node. If so, add 

target_node to the tree. 

                if next_node.connects_to(target_node, world): 



                    add_to_tree(next_node, target_node, tree) 

                    target_node.t = next_node.t + TSTEP 

                    target_node.reached_goal = 

np.array(goal_reaching_indices) 

                    target_node.not_reached_goal = 

np.array(non_goal_reaching_indices) 

                    counter += 1 

                    next_node.children += 1 

 

        # Check whether we should abort - too many nodes 

        if len(tree) >= NMAX: 

            print("Aborted with the tree having %d nodes" % len(tree)) 

            return 

 

    # Build the path from spawn to goal 

    path = [goal_node] 

    

    while path[0].parent is not None: 

        path.insert(0, path[0].parent) 

 

    # Report and return. 

    print("Finished with the tree having %d nodes" % len(tree)) 

    return path 

 

 



Results 
In every trial, we record a graph of the tree, shown in thin lines, and the paths found, 

shown in bold lines. Red cylinders indicate where a node is one time step away from the 

goal. The blue shapes represent obstacles in the world as time progresses. 

 

Varying the number of robots that navigate through the sliding 

door world 

 

Number of 
robots 

Attempted 
nodes mean 

Added 
nodes mean 

Attempted 
nodes 
stddev 

Added 
nodes 
stddev 

Trials 

1 1088 760 748 498 15 

2 2234 1375 1001 601 15 

3 10667 5649 4596 2382 15 

 

Two robots 



Trial Number Image of tree Link to Video Number of 
attempted 
nodes in tree 

Number of 
nodes in tree 

1 

 

 plan.mp4 2485 1564 

2 

 

 plan.mp4 1986 1223 

3 

 

 plan.mp4 2356 1381 

 

Three robots 

Trial Number Image of tree Link to Video Number of 
attempted 
nodes in tree 

Number of 
nodes in tree 

1 

 

 plan.mp4 20381 10528 

2 

 

 plan.mp4 7830 4215 

https://drive.google.com/file/d/1JyDX5G0FnZLbhiqQ5UDXj1ODfvG4-DtR/view?usp=sharing
https://drive.google.com/file/d/1bdEpJ8Aq3dLhuucl5j_eh57AaQnKOsqm/view?usp=sharing
https://drive.google.com/file/d/1G5oEK43rVG1VweA-itClRQO5DD--M-It/view?usp=sharing
https://drive.google.com/file/d/1hhByLHe9_BpBDF9WkhoZHQFYCkFW4c9q/view?usp=sharing
https://drive.google.com/file/d/1bH0GDJjuwPYEKtxK9s6L1l-kh1ZqIJ1a/view?usp=sharing


3 

 

 plan.mp4 6278 3210 

Varying the number of robots that navigate through the oscillator 

world 
SPARSITY_SCALING = 1 

DISTANCE_SCALING = 1 

Two robots 

Trial Number Image of tree Link to Video Number of 
attempted 
nodes in tree 

Number of 
nodes in tree 

1 

 

 2 bots, 2o… 1201 934 

2 

 

 2b t2 v.mov 1724 1175 

https://drive.google.com/file/d/1cdAP3LOLC6SUFFMP5a_uH2kMGqalkaWX/view?usp=sharing
https://drive.google.com/file/d/19qBVfgSTUp0FE2XHpVxbWdYQ2Nwt9LVG/view?usp=drive_link
https://drive.google.com/file/d/1KX5zNdswoLeGHmIXO7mfYUJ_pnnyvFRC/view?usp=sharing


3 

 

 2b t3 v.mov 1010 729 

 

Three robots 

Trial Number Image of tree Link to Video Number of 
attempted 
nodes in tree 

Number of 
nodes in tree 

1 

 

 3 bots, 2o… 1028 834 

2 

 

 3b t2 v.mov 3409 2806 

https://drive.google.com/file/d/1JU2WvpRmNmmFS5lyO5YhW57NAR3R0pQu/view?usp=sharing
https://drive.google.com/file/d/1ZL23wgmaIO3qbLqg9OfsIsSfrwoWvVds/view?usp=drive_link
https://drive.google.com/file/d/1Jf8BHXShBkWeYdoT7Ss7Hxjbz5_OxGHf/view?usp=drive_link


3 

 

 3b t3 v.mov 1286 1132 

 

Four robots 

Trial Number Image of tree Link to Video Number of 
attempted 
nodes in tree 

Number of 
nodes in tree 

1 

 

 4 bots, 2 … 5372 4010 

2 

 

 4b t2.mov 6311 4202 

https://drive.google.com/file/d/1_rL6yqTK5g7MrC5rR38ihPm3yfuI6T3G/view?usp=drive_link
https://drive.google.com/file/d/18QDDx4oXTqwe6RRmLd5BAxCPPhKyqMXq/view?usp=drive_link
https://drive.google.com/file/d/1Co2hNIUzl7yGg76gDijmbSydQe3xZfm4/view?usp=drive_link


3 

 

 4b t3 vid.… 9782 7477 

Two robots swap locations starting outside the corridor.  

We stopped the program once the number of attempted nodes was greater than 10000 

because it takes a few minutes to get to 10000. In practice, it would be ideal to run the 

code on a supercomputer or perhaps develop a more efficient algorithm. 

The corridor width is four times the width of the robot. 
SPARSITY_SCALING = 1 
DISTANCE_SCALING = 1 

Trial Number Image of tree Link to Video Number of 
attempted 
nodes in tree 

Number of 
nodes in tree 

1 

 

corridor_outsi
de_quarter_1.
mp4 

545 158 

https://drive.google.com/file/d/1Rhh8WsziTH-UZZa4Ys5khCqnQeexd6DS/view?usp=drive_link
https://drive.google.com/open?id=1A2PQJfU6cdU7Ma2i_8ed6mdghCT1fiFm&usp=drive_copy
https://drive.google.com/open?id=1A2PQJfU6cdU7Ma2i_8ed6mdghCT1fiFm&usp=drive_copy
https://drive.google.com/open?id=1A2PQJfU6cdU7Ma2i_8ed6mdghCT1fiFm&usp=drive_copy


2 

 

corridor_outsi
de_quarter_2.
mp4 

1390 336 

3 

 

corridor_outsi
de_quarter_3.
mp4 

2185 384 

 

The corridor width is 2 times the width of the robot. 
SPARSITY_SCALING = 1 
DISTANCE_SCALING = 1 

Trial Number Image of tree Link to Video Number of 
attempted 
nodes in tree 

Number of 
nodes in tree 

1 

 

corridor_outsi
de_half_1.mp4 

2190 270 

https://drive.google.com/open?id=1Wlhc-J0XTdoJ3NtHtivKq4kiJYSRlMIC&usp=drive_copy
https://drive.google.com/open?id=1Wlhc-J0XTdoJ3NtHtivKq4kiJYSRlMIC&usp=drive_copy
https://drive.google.com/open?id=1Wlhc-J0XTdoJ3NtHtivKq4kiJYSRlMIC&usp=drive_copy
https://drive.google.com/open?id=1oDEIsA68wltBbI1ETM5SpjGv7iqLs63m&usp=drive_copy
https://drive.google.com/open?id=1oDEIsA68wltBbI1ETM5SpjGv7iqLs63m&usp=drive_copy
https://drive.google.com/open?id=1oDEIsA68wltBbI1ETM5SpjGv7iqLs63m&usp=drive_copy
https://drive.google.com/open?id=11XAkCC1wAA1TZ9997uVWEk3-Ju8ZTdZQ&usp=drive_copy
https://drive.google.com/open?id=11XAkCC1wAA1TZ9997uVWEk3-Ju8ZTdZQ&usp=drive_copy


2 

 

corridor_outsi
de_half_2.mp4 

1392 287 

3 

 

corridor_outsi
de_half_3.mp4 

4714 433 

Two robots swap locations starting within the corridor.  

The corridor width is four times the width of the robot. 
SPARSITY_SCALING = 1 
DISTANCE_SCALING = 1 

Trial Number Image of tree Link to Video Number of 
attempted 
nodes in tree 

Number of 
nodes in tree 

1 

 

N/A 10000 (then we 
stopped the 
program) 

Path not found 

https://drive.google.com/open?id=1fJ4p5-dMvyyM8olIVPYsL9kYokGxW_e8&usp=drive_copy
https://drive.google.com/open?id=1fJ4p5-dMvyyM8olIVPYsL9kYokGxW_e8&usp=drive_copy
https://drive.google.com/open?id=1d2WG71pdQndSYke0PHNk5-dFYTiDNg_W&usp=drive_copy
https://drive.google.com/open?id=1d2WG71pdQndSYke0PHNk5-dFYTiDNg_W&usp=drive_copy


2 

 

corridor_inside
_quarter_2.mp
4 

4395 186 

3 

 

corridor_inside
_quarter_3.mp
4 

441 36 

 

The corridor width is 2 times the width of the robot. 
SPARSITY_SCALING = 1 
DISTANCE_SCALING = 1 

Trial Number Image of tree Link to Video Number of 
attempted 
nodes in tree 

Number of 
nodes in tree 

1 

 

 10000 (then we 
stopped the 
program) 

Path not found 

https://drive.google.com/open?id=1tqn7F21-ZTJVmUhdksXlJZc0UNa2lqIQ&usp=drive_copy
https://drive.google.com/open?id=1tqn7F21-ZTJVmUhdksXlJZc0UNa2lqIQ&usp=drive_copy
https://drive.google.com/open?id=1tqn7F21-ZTJVmUhdksXlJZc0UNa2lqIQ&usp=drive_copy
https://drive.google.com/open?id=1fYsFqPz_nPk00N7hp-RKRGYN-0Q-ul-5&usp=drive_copy
https://drive.google.com/open?id=1fYsFqPz_nPk00N7hp-RKRGYN-0Q-ul-5&usp=drive_copy
https://drive.google.com/open?id=1fYsFqPz_nPk00N7hp-RKRGYN-0Q-ul-5&usp=drive_copy


2 

 

N/A 10000 (then we 
stopped the 
program) 

Path not found 

3 

 

N/A 10000 (then we 
stopped the 
program) 

Path not found 

 

The corridor width is 2 times the width of the robot. 
SPARSITY_SCALING = 1 
DISTANCE_SCALING = 0 

Trial Number Image of tree Link to Video Number of 
attempted 
nodes in tree 

Number of 
nodes in tree 

1 

 

N/A 10000 (then we 
stopped the 
program) 

Path not found 



2 

 

N/A 10000 (then we 
stopped the 
program) 

Path not found 

3 

 

N/A 10000 (then we 
stopped the 
program) 

Path not found 

Lessons Learned 
 

Our algorithm performs best in the oscillator world, likely because it has a greater 

proportion of free space compared to the other worlds. Therefore, the ratio between the 

number of nodes attempted and the number of nodes added to the tree is nearly 1:1. 

This is similar to how EST easily finds paths in a static world with a few obstacles and 

lots of freespace. We plan in D*N+1 dimensions, where N is the number of robots, D is 

the dimension of the robot actions, and the plus 1 is the time dimension. It is unlikely 

that this higher dimensional planning space is sparser than a lower dimensional one. 

The “mind-boggling” performance of our pretty standard EST algorithm is likely an 

illusion. The moving obstacles make it appear difficult to find a path between the start 

and goal node (as many video games like Crossy Road and Color Switch challenge users 

to find paths through moving obstacles). However, computers don’t need to compute the 



path in real time, so finding the path in a dynamic world with few obstacles has similar 

difficulty as finding a path in a static world with few obstacles.  

 

The algorithm struggles with the corridor world in which the robots must traverse 

through a narrow corridor. The ratio between the number of nodes attempted to the 

number of nodes added to the tree is about 10:1. When the robots spawn outside of the 

corridor, the robots always take turns to traverse the corridor, even when at least two 

robots could fit side-by-side. This makes sense since collisions between robots are far 

less likely than when both robots traverse the corridor simultaneously. When the robots 

spawn inside the corridor, however, only the robots that were one quarter the width of 

the corridor were able to find a path in under 10000 nodes—and their paths were always 

toward their goals. This was likely because the metric weighed the distance between the 

nodes and the goal. When the metric ignores this distance and only weighs the number 

of neighboring nodes, EST would require more than 10000 nodes to find a path. While 

the algorithm would eventually find a path, in practice, no one has the patience to wait. 

 

Hence, directing the robot toward the goal expedites robot planning, as shown in the 

sliding, oscillator, and corridor world. After manually testing various sparsity and 

distance scaling factors, we discovered that a 1:1 ratio worked well. The number of 

nodes attempted as well as the number of nodes added to the tree varies slightly or 

greatly depending on the world, but a path is almost always found in a reasonable 

amount of time. Unfortunately, directing the tree growth toward the goal backfires 

when the robot needs to move away from the goal in order to eventually reach the goal. 

Conclusions 

We noticed that when the EST selects the growth node by randomly selecting the nodes 

with the smallest metrics, the tree sometimes struggles to grow. Many nodes would 

cluster around a single node despite our sparsity factor. It’s possibly because all the 

nodes are close too each other. To address this, we used the soft max function to assign 



each node a probability of being selected based on its metric. Then we sampled the 

growth node from the probability distribution. 

 

It would be interesting to test what happens when we enable a robot to vary its velocity 

as it constructs the tree. This would allow the robot to match the velocity of openings 

within moving obstacles. With this method, the time step between the growth and next 

node may be increased. The trade-off is that the robot isn’t traveling at its maximum 

speed. It may be worthwhile to compare this implementation with ours on the worlds 

we tested.   
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