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Overview

What are the project goals, the challenge, and/or the idea that you pursued?

In the future, robots will likely collaborate with each other to complete tasks. For
instance, the Weston Public Library is a relatively small library serving sixty-eight
thousand people, but even so, Eloise spent multiple hours every Friday afternoon of
eighth grade shelving books that people had returned that morning. Her back got sore,
her knees grew tired, but she didn’t complain because the other librarians, at least five
times her age, hadn’t grumbled as they shelved. Instead, she sporadically plopped on the

floor and began reading for a few (hundred) minutes.

Now can you imagine how many books are returned to the Boston Public Library?
(Eloise can’t. She’s from Boston.) It would be ideal to have multiple robots that shelve
books in different sections of the library. There may be robots that guide people to the
book they're searching for, or if they are lazy, the robots may retrieve the book for them.
There could be robots that guide people to the restroom, or if they are lazy, chase them
out of the library. There could be robots that help parents find their lost children as well

as robots that help children evade their parents.

Achieving these goals requires careful planning. Fortunately, we are terrific at planning.
(Proof: We started this report the day before it was due.) We generalized the library
scenario into the following:

1. Multiple robots would spawn at their starting locations in 2D-space.

2. Each robot would have a target destination in 2D-space.

3. The robots would have to navigate through a world filled with static and moving

obstacles to reach their destinations.



4. Obstacles include:
a. Tight corridors, which resemble the space in between two shelves
b. Oscillating squares, which represent people or furniture
c. Sliding doors, which simulate sliding doors.

5. The map of the world at any given time is known.

The easiest way to generate paths for each robot is to have one robot find a
collision-free path, then ask the second robot to find a collision-free path assuming that
the first robot’s path is fixed. However, more efficient paths may be found by having a
central “brain” simultaneously compute the path for each robot. Let’s say eight robots
spawned equidistantly on the radius of a circle each with a goal location on the opposite
side. The first algorithm would likely have all robots pass through the center of the
circle. However, a perfect simultaneous planner would have the robots move in a

semicircle.

Approach

Before attempting to write the simultaneous planner, however, we wrote a
temporal-spatial planner for one robot. The robot would be initialized at the node
(x_spawn, y_spawn, t=0). It would try to find a path to the node (x_goal, y_goal,
t=unknown). In class, we learned about the Probabilistic Road Map (PRM), Expansive
Search Tree (EST), and the Rapidly Exploring Random Tree (RRT). The PRM builds a
graph such that the path between any two nodes in the static world can be queried. Our
world is dynamic, however, so it’s more efficient to use an EST or RRT, which generates
a single path between two points. In the RRT algorithm, a target node (x, v, t)
coordinates is randomly sampled. Then, the node closest to the target node will grow
toward the target. However, it is virtually impossible to determine the node that is
closest in space and time to the target node when there are obstacles moving over a long
duration of time in between the nodes. Therefore, we implemented an EST, which

generates a single path between two points.



We represent the robot as a square that can move continuously in the x and y direction.
The x and y distances traveled are independent of each other, and the orientation of the
square is negligible. We pick the growth node, which minimizes a metric, which is
larger for nodes with more neighbors, greater distances from the goal, and more failures
to connect with randomly sampled nodes. We sample a node, dubbed the next node, that
is at a random heading from the growth node and a certain radius R (robot max velocity
multiplied by the simulation time step) from the growth node. We set the time of the
next node to the growth node’s time plus the simulation time step. Afterward, we check
if there are any collisions as the robot traverses from the growth node to the next node.
If there are no collisions, the next node is added to the EST. Then if the non-temporal
distance between the next node and the goal is smaller than R, we attempt to connect
the next node to the goal. If the connection succeeds, we add the goal to the tree,
traceback the path from the start to the goal, then post-process the path to reduce the
number of zig-zags. During post-processing, if two non-neighboring nodes are able to
connect, the temporal distance between the nodes remains the same, however, the

spatial distance decreases. Therefore, the robot’s velocity is no longer constant.

For our single robot temporal-spatial planner, we tested two collision-detection
algorithms to determine if node (x1, y1, t1) connects to (x2, y2, t2):

1. Convex Hull Approximation: We compute the convex hull of an obstacle’s
bounding box at t1 and t2, then check if the robot collides with this convex hull
as the robot moves from (x1, y1, t1) to (x2, y2, t2). We iterate through all the
obstacles.

2. Van der Corput Method: Using a granularity of 1/16, we calculate at most 14
nodes equally spaced between (x1, y1, t1) to (x2, y2, t2). We check for collisions
between the node and other obstacles in the van der Corput sequence.

While the convex hull approximation ran faster in simpler worlds, the van der Corput

method found more efficient paths. In more complex worlds, the convex hull



approximation sometimes prevented EST from finding paths, whereas the van der

Corput succeeded.

Therefore, for our multi-robot planner, we opted for the van der Corput method.

Technical Details

Below we display the pertinent lines of code.

In constants.py, we define the start/spawn location of each robot

Example 1:
ROBOT _SPAWNS np.array([[2, 2],
[7, 611)

ROBOT GOALS np.array([[2, 3],
[7, 911)

To execute simultaneous robot planning, we use MultiNodes. The MultiNode is a single
node in the EST algorithm, but we call it the MultiNode because it stores the x and y
position for multiple robots, along with the time. The MultiNode for Example 1 would

have X = np.array([2, 7]) and Y = np.array([2, 6]).

class MultiNode:

"""A tree node that supports multiple simultaneous robots."""

def init (
self,
X: np.ndarray,
Y: np.ndarray,

t: Optional[float],
parent: Optional ["MultiNode"] None,




dx squared np.square(self.X - ROBOT_GOALS[:, 0])
dy squared np.square(self.Y - ROBOT _GOALS[:, 1])
distances np.sqrt(dx_squared + dy squared)

radii ROBOT_SPEEDS * TSTEP

self.reached goal np.where (distances <= radii) [0]

self.not_reached goal np.where (distances > radii) [0]

self.parent parent

self.children

self.failures

The EST algorithm is shown below.

def multi est(
spawn_node: MultiNode,
goal node: MultiNode,
world: Map,

visual: Visualization,

won

Finds the path for each robot to move from their starting position
to their goal position without colliding with obstacles or each other.
tree [spawn_node]

True:

X np.array ([node.spacetime coordinates () node tree])
kdtree cKDTree (X)




num near kdtree.query ball point (X, r=NEARBY DISTANCE,

return length=True)

distances np.array ([node.distance (goal node) node

metric SPARSITY SCALING num near + DISTANCE SCALING
distances

probs np.exp (-metric) np.exp (-metric) .sum()

index np.random.choice (np.arange(len(probs)), p probs)

growth node tree[index]

headings np.random.random(size NUM_ROBOTS) * tau

next node growth node.next node (headings)

next node.in freespace (world)
growth node.connects_to(next node, world):
add_to_tree (growth _node, next node, tree)

growth node.children 1

can _reach goal in time (next node.robot distances (goal node)
<= ROBOT_SPEEDS * TSTEP)




np.all (can_reach goal in time)

next node.connects_to(goal node, world):
add_to_tree (next_node, goal node, tree)

goal node.t next node.t TSTEP

counter 1

np.any (can_reach goal in time):

goal reaching indices can_reach goal in time.nonzero()

target coords np.zeros ( (NUM_ROBOTS, 2))

target coords[goal reaching indices, 0]

goal node.X[goal reaching indices]
target coords[goal reaching indices, 1]

goal node.Y[goal reaching indices]

non_goal reaching indices

np .where (can_reach goal in time (0))]

headings np.random.random(size NUM _ROBOTS) * tau

following node next node.next node (headings)

target coords[non_goal reaching indices, 0]

following node.X[non goal reaching indices]
target coords[non _goal reaching indices, 1]

following node.Y[non goal reaching indices]

target node MultiNode (target coords[:, 0],

target coords[:, 1], ¢t None)

next node.connects_to(target node, world):




add to_tree (next node, target node, tree)
target node.t next node.t TSTEP

target node.reached goal

np .array (goal reaching indices)

target node.not_ reached goal
np .array (non_goal reaching indices)
counter 1

next node.children

len (tree) NMAX :
print ("Aborted with the tree having %d nodes" len (tree))

path [goal node]
path[0] .parent None:

path.insert (0, path[0] .parent)

print ("Finished with the tree having %d nodes" len (tree))
path




Results

In every trial, we record a graph of the tree, shown in thin lines, and the paths found,
shown in bold lines. Red cylinders indicate where a node is one time step away from the

goal. The blue shapes represent obstacles in the world as time progresses.

[25
20

15

10

Varying the number of robots that navigate through the sliding

door world

Number of | Attempted | Added Attempted | Added Trials
robots nodes mean | nodes mean |nodes nodes
stddev stddev
1 1088 760 748 498 15
2 2234 1375 1001 601 15
3 10667 5649 4596 2382 15

Two robots




Trial Number

Image of tree

Link to Video

Number of
attempted

nodes in tree

Number of

nodes in tree

1 W plan.mp4 2485 1564
2 Wi plan.mp4 1986 1223
3 Wi plan.mp4 2356 1381

Three robots

Trial Number

Image of tree

Link to Video

Number of
attempted

nodes in tree

Number of

nodes in tree

Wi plan.mp4

20381

10528

Wi plan.mp4

7830

4215



https://drive.google.com/file/d/1JyDX5G0FnZLbhiqQ5UDXj1ODfvG4-DtR/view?usp=sharing
https://drive.google.com/file/d/1bdEpJ8Aq3dLhuucl5j_eh57AaQnKOsqm/view?usp=sharing
https://drive.google.com/file/d/1G5oEK43rVG1VweA-itClRQO5DD--M-It/view?usp=sharing
https://drive.google.com/file/d/1hhByLHe9_BpBDF9WkhoZHQFYCkFW4c9q/view?usp=sharing
https://drive.google.com/file/d/1bH0GDJjuwPYEKtxK9s6L1l-kh1ZqIJ1a/view?usp=sharing

Wi plan.mp4

6278

3210

Varying the number of robots that navigate through the oscillator

world

Two robots

Trial Number

Image of tree

Link to Video

Number of
attempted

nodes in tree

Number of

nodes in tree

W 2 bots, 20...

1201

934

W 2b t2 v.mov

1724

1175



https://drive.google.com/file/d/1cdAP3LOLC6SUFFMP5a_uH2kMGqalkaWX/view?usp=sharing
https://drive.google.com/file/d/19qBVfgSTUp0FE2XHpVxbWdYQ2Nwt9LVG/view?usp=drive_link
https://drive.google.com/file/d/1KX5zNdswoLeGHmIXO7mfYUJ_pnnyvFRC/view?usp=sharing

3 Wi 2b t3 v.mov | 1010 729

Three robots

Trial Number [Image of tree | Link to Video | Number of Number of
attempted nodes in tree

nodes in tree

Wi 3 bots, 2o0...

1028

834

W 3b t2 v.mov

3409

2806



https://drive.google.com/file/d/1JU2WvpRmNmmFS5lyO5YhW57NAR3R0pQu/view?usp=sharing
https://drive.google.com/file/d/1ZL23wgmaIO3qbLqg9OfsIsSfrwoWvVds/view?usp=drive_link
https://drive.google.com/file/d/1Jf8BHXShBkWeYdoT7Ss7Hxjbz5_OxGHf/view?usp=drive_link

3 Wi 3b t3 v.mov | 1286 1132

Four robots

Trial Number [Image of tree | Link to Video | Number of Number of
attempted nodes in tree

nodes in tree

Wi 4 bots, 2 ...

5372

4010

W 4b t2.mov

6311

4202



https://drive.google.com/file/d/1_rL6yqTK5g7MrC5rR38ihPm3yfuI6T3G/view?usp=drive_link
https://drive.google.com/file/d/18QDDx4oXTqwe6RRmLd5BAxCPPhKyqMXq/view?usp=drive_link
https://drive.google.com/file/d/1Co2hNIUzl7yGg76gDijmbSydQe3xZfm4/view?usp=drive_link

W 4b t3 vid....

9782

7477

Two robots swap locations starting outside the corridor.

We stopped the program once the number of attempted nodes was greater than 10000

because it takes a few minutes to get to 10000. In practice, it would be ideal to run the

code on a supercomputer or perhaps develop a more efficient algorithm.

The corridor width is four times the width of the robot.
SPARSITY _SCALING =1
DISTANCE_SCALING =1

Trial Number

Image of tree

Link to Video

Number of
attempted

nodes in tree

Number of

nodes in tree

corridor outsi

de guarter 1.
mp4

545

158



https://drive.google.com/file/d/1Rhh8WsziTH-UZZa4Ys5khCqnQeexd6DS/view?usp=drive_link
https://drive.google.com/open?id=1A2PQJfU6cdU7Ma2i_8ed6mdghCT1fiFm&usp=drive_copy
https://drive.google.com/open?id=1A2PQJfU6cdU7Ma2i_8ed6mdghCT1fiFm&usp=drive_copy
https://drive.google.com/open?id=1A2PQJfU6cdU7Ma2i_8ed6mdghCT1fiFm&usp=drive_copy

2 corridor outsi | 1390 336
de quarter 2.
mp4
3 corridor outsi |[2185 384
de quarter 3.
mp4
The corridor width is 2 times the width of the robot.
SPARSITY _SCALING =1
DISTANCE_SCALING =1
Trial Number [Image of tree | Link to Video | Number of Number of
attempted nodes in tree

nodes in tree

corridor outsi

de half 1.mp4

2190

270



https://drive.google.com/open?id=1Wlhc-J0XTdoJ3NtHtivKq4kiJYSRlMIC&usp=drive_copy
https://drive.google.com/open?id=1Wlhc-J0XTdoJ3NtHtivKq4kiJYSRlMIC&usp=drive_copy
https://drive.google.com/open?id=1Wlhc-J0XTdoJ3NtHtivKq4kiJYSRlMIC&usp=drive_copy
https://drive.google.com/open?id=1oDEIsA68wltBbI1ETM5SpjGv7iqLs63m&usp=drive_copy
https://drive.google.com/open?id=1oDEIsA68wltBbI1ETM5SpjGv7iqLs63m&usp=drive_copy
https://drive.google.com/open?id=1oDEIsA68wltBbI1ETM5SpjGv7iqLs63m&usp=drive_copy
https://drive.google.com/open?id=11XAkCC1wAA1TZ9997uVWEk3-Ju8ZTdZQ&usp=drive_copy
https://drive.google.com/open?id=11XAkCC1wAA1TZ9997uVWEk3-Ju8ZTdZQ&usp=drive_copy

de half 3.mp4

2 corridor outsi | 1392 287
de half 2.mp4
3 corridor outsi |4714 433

Two robots swap locations starting within the corridor.

The corridor width is four times the width of the robot.
SPARSITY SCALING =1
DISTANCE SCALING =1

Trial Number

Image of tree

Link to Video

Number of
attempted

nodes in tree

Number of

nodes in tree

[} /
A SN

N/A

10000 (then we
stopped the

program)

Path not found



https://drive.google.com/open?id=1fJ4p5-dMvyyM8olIVPYsL9kYokGxW_e8&usp=drive_copy
https://drive.google.com/open?id=1fJ4p5-dMvyyM8olIVPYsL9kYokGxW_e8&usp=drive_copy
https://drive.google.com/open?id=1d2WG71pdQndSYke0PHNk5-dFYTiDNg_W&usp=drive_copy
https://drive.google.com/open?id=1d2WG71pdQndSYke0PHNk5-dFYTiDNg_W&usp=drive_copy

2 corridor inside | 4395 186
quarter 2.mp
4
3 corridor inside | 441 36

—quarter 3.mp
4

The corridor width is 2 times the width of the robot.

SPARSITY_SCALING =1
DISTANCE_SCALING =1

Trial Number

Image of tree

Link to Video

Number of
attempted

nodes in tree

Number of

nodes in tree

o SLRERRLR ,
g‘gm&mmm\\\xw\\\\\

10000 (then we
stopped the

program)

Path not found



https://drive.google.com/open?id=1tqn7F21-ZTJVmUhdksXlJZc0UNa2lqIQ&usp=drive_copy
https://drive.google.com/open?id=1tqn7F21-ZTJVmUhdksXlJZc0UNa2lqIQ&usp=drive_copy
https://drive.google.com/open?id=1tqn7F21-ZTJVmUhdksXlJZc0UNa2lqIQ&usp=drive_copy
https://drive.google.com/open?id=1fYsFqPz_nPk00N7hp-RKRGYN-0Q-ul-5&usp=drive_copy
https://drive.google.com/open?id=1fYsFqPz_nPk00N7hp-RKRGYN-0Q-ul-5&usp=drive_copy
https://drive.google.com/open?id=1fYsFqPz_nPk00N7hp-RKRGYN-0Q-ul-5&usp=drive_copy

2 . | N/A 10000 (then we | Path not found
_/ij . stopped the
z ; program)
,f t
-4 AL
3 N/A 10000 (then we | Path not found

oy Vel
)‘\, RHRSOROAOROSORN KA NROX

stopped the

program)

The corridor width is 2 times the width of the robot.

SPARSITY_SCALING =1
DISTANCE_SCALING =0

Trial Number

Image of tree

Link to Video

Number of
attempted

nodes in tree

Number of

nodes in tree

iy ARSI

N/A

10000 (then we
stopped the

program)

Path not found




2 N/A 10000 (then we | Path not found
stopped the

program)

N/A 10000 (then we | Path not found
stopped the

program)

Lessons Learned

Our algorithm performs best in the oscillator world, likely because it has a greater
proportion of free space compared to the other worlds. Therefore, the ratio between the
number of nodes attempted and the number of nodes added to the tree is nearly 1:1.
This is similar to how EST easily finds paths in a static world with a few obstacles and
lots of freespace. We plan in D*N+1 dimensions, where N is the number of robots, D is
the dimension of the robot actions, and the plus 1 is the time dimension. It is unlikely
that this higher dimensional planning space is sparser than a lower dimensional one.
The “mind-boggling” performance of our pretty standard EST algorithm is likely an
illusion. The moving obstacles make it appear difficult to find a path between the start
and goal node (as many video games like Crossy Road and Color Switch challenge users

to find paths through moving obstacles). However, computers don’t need to compute the



path in real time, so finding the path in a dynamic world with few obstacles has similar

difficulty as finding a path in a static world with few obstacles.

The algorithm struggles with the corridor world in which the robots must traverse
through a narrow corridor. The ratio between the number of nodes attempted to the
number of nodes added to the tree is about 10:1. When the robots spawn outside of the
corridor, the robots always take turns to traverse the corridor, even when at least two
robots could fit side-by-side. This makes sense since collisions between robots are far
less likely than when both robots traverse the corridor simultaneously. When the robots
spawn inside the corridor, however, only the robots that were one quarter the width of
the corridor were able to find a path in under 10000 nodes—and their paths were always
toward their goals. This was likely because the metric weighed the distance between the
nodes and the goal. When the metric ignores this distance and only weighs the number
of neighboring nodes, EST would require more than 10000 nodes to find a path. While

the algorithm would eventually find a path, in practice, no one has the patience to wait.

Hence, directing the robot toward the goal expedites robot planning, as shown in the
sliding, oscillator, and corridor world. After manually testing various sparsity and
distance scaling factors, we discovered that a 1:1 ratio worked well. The number of
nodes attempted as well as the number of nodes added to the tree varies slightly or
greatly depending on the world, but a path is almost always found in a reasonable
amount of time. Unfortunately, directing the tree growth toward the goal backfires

when the robot needs to move away from the goal in order to eventually reach the goal.

Conclusions

We noticed that when the EST selects the growth node by randomly selecting the nodes
with the smallest metrics, the tree sometimes struggles to grow. Many nodes would
cluster around a single node despite our sparsity factor. It’s possibly because all the

nodes are close too each other. To address this, we used the soft max function to assign



each node a probability of being selected based on its metric. Then we sampled the

growth node from the probability distribution.

It would be interesting to test what happens when we enable a robot to vary its velocity
as it constructs the tree. This would allow the robot to match the velocity of openings
within moving obstacles. With this method, the time step between the growth and next
node may be increased. The trade-off is that the robot isn’t traveling at its maximum
speed. It may be worthwhile to compare this implementation with ours on the worlds

we tested.
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