
Final Project Report
Clare Wu, Ryan Rudes, Eloise Zeng
https://drive.google.com/file/d/1-6laItlRzracQgOu8Va9XeoPzmuFSt7W/view?usp=drive_
link

Introduction
Our goal is to program the Franka Emika Panda robot, a 7-DOF robot arm with a paddle
attachment, to smoothly intercept and redirect a tennis ball thrown with an arbitrary
trajectory. We implemented a simple physics engine incorporating gravitational forces
and collisions. Given the ball’s initial position and velocity, we project its path in discrete
time steps of 1 millisecond. Then, for each point along the ball’s trajectory, the robot,
starting from its non-singular zero configuration, simulates how it would intercept the
ball at that location, matching the ball’s velocity at the point of interception. We prevent
the robot from attempting to catch the ball below the ground plane (z = 0). We select the
ideal location to intercept the ball, using the condition number as a heuristic. After
contacting the ball, the robot orients the paddle’s circular face such that its normal
vector opposes the velocity of the ball while gradually decelerating it to zero velocity.
The duration of deceleration is a parameter that can be tuned to achieve desirable
behavior such as catching the ball, then throwing it to the side, rolling it on the ground,
balancing the ball, or directly dropping the ball.

Robot and System Description
To display the robot in Rviz, we used the franka_panda package, which was provided by
the course. We used the panda_arm.xacro file, which has seven degrees of freedom. We
fix the base at the origin. Then we modified the hand.xacro file to fix the position of the
hand’s two fingers/grippers. We constructed a URDF file for the paddle. We connected
the arm, hand, and paddle in a urdf.xacro file such that the robotic arm has a hand that
grips the paddle. The robot is able to pass through itself and has a maximum reach of
0.855 meters. The workspace of the robot is depicted below.

https://drive.google.com/file/d/1-6laItlRzracQgOu8Va9XeoPzmuFSt7W/view?usp=drive_link
https://drive.google.com/file/d/1-6laItlRzracQgOu8Va9XeoPzmuFSt7W/view?usp=drive_link

Source:
https://www.generationrobots.com/media/panda-franka-emika-datasheet.pdf

Task
We designate the tip of the robot as the center of the cylindrical paddle. The robot’s
primary task is to match the desired position, velocity, and orientation of the tip, without
regard for its rotation about the z-axis in the tip frame. Thus, the task space has five
degrees of freedom. Three DOFs are dedicated to positioning the paddle in xyz
coordinates. Two DOFs are dedicated to orienting the vector that is normal to the
paddle’s circular face. Since the paddle has cylindrical symmetry, it doesn’t matter how
the paddle is rotated about this normal vector when catching the ball. The robot uses its
two extra degrees of freedom to perform its secondary task: moving its joints toward
the robot’s initial configuration, which is nonsingular and comfortable for the arm to
move freely in. This hinders the robot from locking up or swinging its limbs at high
velocities.

The task isn’t achievable when the ball doesn’t cross the workspace of the arm. We
eliminate this scenario by generating an initial ball position and velocity that ensures the
ball passes through the robot’s workspace. If the ball exits the robot’s workspace, we
freeze the arm so it doesn’t twitch as it attempts to interact with the ball.

Algorithm and Implementation
Our robot’s behavior is divided into three stages.

In stage zero, we run a planning algorithm to determine the ideal location at which to
intercept the ball, which has a randomized trajectory crossing the robot’s workspace.

In stage one, the robot intercepts the ball at the ideal location with the visualizer
enabled. The paddle moves at the same velocity of the ball at the instant of first
contact. The z-axis of the tip frame opposes the velocity vector of the ball, so the paddle
is normal to the ball’s motion (refer to the pseudocode below).

In stage two, the robot decelerates the ball to zero velocity. This is an unstable
equilibrium, so we are concerned with keeping the ball on the paddle. Hence, the paddle
follows the ball as it rolls. Once the allotted deceleration time is up, the arm stops
moving, thus letting the ball go.

stage_0():

Get Jacobian at given position

Get average link_length of arm

Scale first three rows of Jacobian by link_length

Compute condition number

return condition number, joint values, tip position and velocity

generate_trajectory():

acceleration = [0, 0, gravity]

for t over given time:

integrate ball velocity and position

velocity += dt * acceleration

position += dt * velocity

add velocity and position to list

We choose the point of interception at which the arm’s condition number is minimized. This
ensures the arm can move freely after the point of interception.

interception_points = [points along ball’s trajectory equally spaced

through time]

best_condition_number = infinity (initially)

plan_interception():

for point in interception_points:

Check in range:

If yes, continue

Check if can reach in time:

If yes, continue

cond = stage_0()

if cond < best_condition_number:

intercept at this point

Then we move the arm to match identified point of interception and ball’s velocity at this point

ik_intercept_ball():

desired position and velocity

pd, vd = spline(t, intercept_time, initial_position, intercept_position,

initial_velocity, intercept_velocity)

Find appropriate angle and rotational velocity

intercept_angle = angle between initial paddle norm and paddle norm when

catching ball

alpha, alphadot = goto(t, intercept_time, 0, intercept_angle)

find axis to rotate around

n = cross(original_nz, intercept_norm)

desired direction of normal vector

nzd = Rotn(n, alpha) @ intercept_norm

wd = n * alphadot # desired rotational_vel

find current tip position, orientation, Jacobians for velocity and

rotational velocity

ptip, Rtip, Jv, Jw = fkin(qdlast) #current joint positions

wd_wrt_tip= Rtip.T @ wd then get rid of last row

Jw_wrt_tip = Rtip.T @ Jw then get rid of last row

don’t care about last row because don’t care about rotation around

tip’s z-axis

J = combine Jv and Jw_wrt_tip

calculate errors

vr = vd + (lambda * error_p)

wr = wd_wrt_tip + (lambda * error_nzd)

xdot = combine vr and wr

take weighted inverse of J (J_winv)

qdot_secondary = lambda2 * (initial q - current q)

qddot = J_winv @ xdot + (I - J_winv @ J) @ qdot_secondary

qd = current qd + (dt * qddot)

return (qd, qddot, pd, vd, nzd, wd)

We use the weighted inverse of the Jacobian to help the robot avoid a singular configuration.
The paddle decelerates the ball such that the ball doesn’t bounce off the paddle.

SLOWDOWN_TIME = time assigned to balance ball

time can’t be too short because the ball will hit the ground

#also changes with stickiness of paddle

ik_decelerate_ball():

deceleration = -(ball_velocity / (SLOWDOWN_TIME - (t -

self.intercept_time))

ball_direction = ball_velocity / norm(ball_velocity)

calculate desired velocity (vd) and position (pd) based off ball
vd = ball_velocity + deceleration * dt

pd = ball_position - ball_direction * (TENNIS_BALL_RADIUS + PADDLE_THICKNESS

/ 2) # the paddle is opposing the ball_direction. Thus, we desire the paddle to

move in the opposite direction of the ball. We also ensure the paddle remains

tangent to the ball.

nzd = (ball_position - pd) / norm(ball_position - pd)

change orientation of paddle to follow ball as it rolls on the paddle

similar to previous function

ptip, Rtip, Jv, Jw = fkin(qdlast) #current joint positions

calculate wd_wrt_tip

calculate Jw_wrt_tip

J = combine Jv and Jw_wrt_tip

calculate errors

find vr and wr

xddot = combine vr and wr

J_winv = weighted inverse of J

qddot = J_winv @ xddot

qd = current q + (dt * qddot)

return (qd, qddot, pd, vd, nzd, wd)

The ball and the paddle will always contact each other as long as their velocities match after
interception. If they don’t, the ball is prone to bouncing. Since the robot is unable to match the
desired velocity perfectly, we introduce a STICKINESS constant in the physics engine. If the
magnitude of the difference between the paddle and ball velocity (in the direction of the paddle’s
normal vector?) is less than the STICKINESS constant, we adjust the ball velocity to match that
of the paddle in the direction of the paddle’s normal vector. The ball is free to roll relative to the
paddle. This simulates how in real life, the ball can squish or stretch a little and still remain in
contact with the paddle.

Particular Features
One way we deal with singularities is by avoiding them with our planning in stage 0.
Assuming total information regarding the dynamics of the ball’s motion, we forecast its
trajectory ahead of time based on the initial conditions (position and velocity) and a
discrete-time physics update. We approximate the workspace of the robot arm as a
hemisphere above the ground plane of radius .855 m centered at the world origin and
consider the section of the trajectory that intersects the hemisphere. We subdivide that
parabolic curve section into points (“candidate intercepts”), equally spaced throughout
time by 1 millisecond.

For each candidate intercept, we (without visualization) unroll our stage one arm
controller (see stage_0) as if we were to intercept the ball at that location, then record
the condition number of the robot arm’s configuration at the moment of interception
(see plan_interception). After testing each candidate intercept, we choose the intercept
that yields the optimal configuration, which occurs when the condition number is
minimized.

The motivation for this planning is that after intercepting the ball, the robot must react
quickly and smoothly to decelerate the ball without allowing it to bounce off of the
paddle. Therefore, we intercept the ball where the robot has the most freedom to move
thereafter. The robot tends to catch in the middle of its workspace, about half the arm’s
length from the origin.

Analysis, Plots, Other Materials

Drop Down
In this demonstration, the ball is dropped from rest 1.0 meter above and 0.2 meters in front of
the initial tip position. First contact occurs at roughly t=0.45s, at which point tiny discontinuities
in the ball velocity can be observed each time it bounces. The smaller these discontinuities, the
“smoother” our interception and subsequent slowdown.

The ball is smoothly brought to rest at roughly t=0.8s.

Comparing ball velocity to tip velocity; these should be identical at the instant of first contact.

Throw From Side
In this demo, the ball is tossed “underhand” from the side of the robot.

First contact is made at roughly t=0.55s and the ball is brought to rest at t=1s.

From the moment of first contact onward, the paddle moves with nearly the same velocity of the
ball, but with just enough gradual deceleration to eventually bring it to rest.

Joint velocities remain fairly smooth over the duration of this complicated interception,
demonstrating little to no instantaneous accelerations.

Throw From Other Side
In this demo, the ball is tossed “underhand” from the other side of the robot.

First contact is made at roughly t=0.55s and the ball is brought to rest at t=1.2s.

Joint velocities remain fairly smooth over the duration of this complicated interception,
demonstrating little to no instantaneous accelerations.

